Publications: Journal Articles

(* = equal contribution, = corresponding author, Group member names in bold)

  1. S. K. Sridhar, S. Ghosh, D. Srinivasan, A. R. Miller, and A. Dutt, Quantized topological pumping in Floquet synthetic dimensions with a driven dissipative photonic molecule. Nat. Phys. (2024) doi:10.1038/s41567-024-02413-3.
  2. C. R. Leefmans, M. Parto, J. Williams, G. H. Y. Li, A. Dutt, F. Nori, and A. Marandi, “Topological temporally mode-locked laser,” Nat. Phys. (2024). doi:10.1038/s41567-024-02420-4.
  3. B. Bartlett, O. Y. Long, A. Dutt, and S. Fan, “Programmable photonic system for quantum simulation in arbitrary topologies,” APL Quantum 1, 016102 (2024).
  4. Z. Dong, X. Chen, A. Dutt, and L. Yuan, “Topological Dissipative Photonics and Topological Insulator Lasers in Synthetic Time-Frequency Dimensions,” Laser & Photonics Reviews, 2300354 (2024).
  1. D. Srinivasan*, K. Chakrabarti*, Nikhil Chopra, Avik Dutt†, “Quantum Circuit Optimization through Iteratively Pre-Conditioned Gradient Descent,” arXiv:2309.09957 (2023). Oral presentation at the 2023 IEEE Conference on Quantum Computing and Engineering (QCE23).
  2. L. Fan, K. Wang, H. Wang, A. Dutt, and S. Fan, “Experimental realization of convolution processing in photonic synthetic frequency dimensions,” Science Advances 9, eadi4956 (2023).
  3. X. Guo, X. Ji, B. Yao, T. Tan, A. Chu, O. Westreich, A. Dutt†, C. Wong, and Y. Su, “Ultra-wideband integrated photonic devices on silicon platform: from visible to mid-IR,” Nanophotonics 12, 167 (2023).
  4. O. Y. Long, K. Wang, A. Dutt, and S. Fan, “Time reflection and refraction in synthetic frequency dimension,” Phys. Rev. Res. 5, L012046 (2023).
  5. G. Li, L. Wang, R. Ye, Y. Zheng, D.-W. Wang, X.-J. Liu, A. Dutt, L. Yuan, and X. Chen, “Direct extraction of topological Zak phase with the synthetic dimension,” Light: Science & Applications (NPG) 12, 81 (2023).
  1. L. Fan, Z. Zhao, K. Wang, A. Dutt, J. Wang, S. Buddhiraju, C. C. Wojcik, and S. Fan, “Multidimensional Convolution Operation with Synthetic Frequency Dimensions in Photonics,” Phys. Rev. Applied 18, 034088 (2022).
  2. J. Zhong, K. Wang, Y. Park, V. Asadchy, C. C. Wojcik, A. Dutt, and S. Fan, “Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals,” Phys. Rev. B 104, 125416 (2021).
  3. G. Moille, C. Menyuk, Y. K. Chembo, A. Dutt, and K. Srinivasan, “Synthetic Frequency Lattices from an Integrated Dispersive Multi-Color Soliton,” arXiv 2210.09036 (2022).
  4. C. C. Wojcik, K. Wang, A. Dutt, J. Zhong, and S. Fan, “Eigenvalue topology of non-Hermitian band structures in two and three dimensions,” Phys. Rev. B 106, L161401 (2022).
  5. A. Dutt, L. Yuan, K. Y. Yang, K. Wang, S. Buddhiraju, J. Vučković, and S. Fan, “Creating boundaries along a synthetic frequency dimension,” Nature Communications 13, 3377 (2022).
  6. C. Leefmans*, A. Dutt*, J. Williams, L. Yuan, M. Parto, F. Nori, S. Fan, A. Marandi, “Topological dissipation in a time-multiplexed photonic resonator network,” Nature Physics (2022). Related News & Views: Loss leads the way to utopia.
  7. A. Dutt, L. Yuan, S. Fan, “Synthetic dimensions in photonics,” in “Roadmap on topological photonics,” by H. Price, Y. Chong, A. Khanikaev et al., Journal of Physics, Photonics (IOP), (2022).
  1. K. Wang*, A. Dutt*, K. Y. Yang, C. C. Wojcik, J. Vučković, and S. Fan, “Generating arbitrary topological windings of a non-Hermitian band,” Science 371, 1240 (2021).
  2. K. Wang, A. Dutt, C. C. Wojcik, and S. Fan, “Topological complex-energy braiding of non-Hermitian bands,” Nature 598, 59 (2021).
  3. G. Li*, Y. Zheng*, A. Dutt*, D. Yu, Q. Shan, S. Liu, L. Yuan, S. Fan, X. Chen, “Dynamic band structure measurement in the synthetic space,” Science Advances 7, eabe4335 (2021).
  4. B. Bartlett, A. Dutt, and S. Fan, “Deterministic photonic quantum computation in a synthetic time dimension,” Optica 8, 1515 (2021).
  5. S. Buddhiraju, A. Dutt, M. Minkov, I. A. D. Williamson, and S. Fan, “Arbitrary linear transformations for photons in the frequency synthetic dimension,” Nat Commun 12, 2401 (2021).
  6. L. Yuan, A. Dutt, and S. Fan, “Synthetic frequency dimensions in dynamically modulated ring resonators,” APL Photonics 6, 071102 (2021).
  7. A. Roy, S. Jahani, Q. Guo, A. Dutt, S. Fan, M.-A. Miri, and A. Marandi, “Nondissipative non-Hermitian dynamics and exceptional points in coupled optical parametric oscillators,” Optica, 8, 415–421 (2021).
  8. J. Zhong, K. Wang, Y. Park, V. Asadchy, C. C. Wojcik, A. Dutt, and S. Fan, “Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals,” Phys. Rev. B 104, 125416 (2021).
  9. C. C. Wojcik, K. Wang, A. Dutt, J. Zhong, and S. Fan, “Eigenvalue topology of non-Hermitian band structures in two and three dimensions,” arXiv:2111.09977 (2021).
  1. A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan, “A single photonic cavity with two independent physical synthetic dimensions,” Science 367, 59 (2020).
  2. A. Dutt, M. Minkov, I.A.D. Williamson, S. Fan, “Higher-order topological insulators in synthetic dimensions,” Light: Science & Applications 9, 131 (2020).
  3. K. Y. Yang, J. Skarda, A. Dutt, G. H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, J. Vučković, M. Cotrufo, and A. Alù, “Nonreciprocal Devices in Silicon Photonics,” Optics & Photonics News, 31, 38–38 (2020).
  4. L. Yuan, A. Dutt, M. Qin, S. Fan, X. Chen, “Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons,” Photon. Research 8, B8 (2020).
  5. A. Y. Song, X.-Q. Sun, A. Dutt, M. Minkov, C. Wojcik, H. Wang, I.A.D. Williamson, M. Orenstein, S. Fan, “PT-symmetric topological edge-gain effect,” Phys. Rev. Lett. 125, 033603 (2020).
  6. C. Joshi, A. Farsi, A. Dutt, B.Y. Kim, X. Ji, Y. Zhao, A. Bishop, M. Lipson, A.L. Gaeta, “Frequency domain quantum interference with entangled photons from an integrated microresonator,” Phys. Rev. Lett. 124, 143601 (2020).
  7. K.Y. Yang*, J. Skarda*, M. Cotrufo*, A. Dutt, G.H. Ahn, M. Sawaby, D. Vercruysse, A. Arbabian, S. Fan, A. Alù, J. Vučković, “Inverse-designed non-reciprocal pulse router for chip-based LiDAR,” Nature Photonics 14, 369 (2020).
  8. S. Buddhiraju, Y. Shi, A. Song, C. Wojcik, M. Minkov, I.A.D. Williamson, A. Dutt, S. Fan, “Absence of unidirectionally propagating surface plasmon-polaritons in nonreciprocal plasmonics,” Nature Communications 11, 674 (2020).
  9. I.A.D. Williamson, M. Minkov, A. Dutt, J. Wang, A. Y. Song, S. Fan, ”Integrated nonreciprocal photonic devices with dynamic modulation,” Proceedings of the IEEE 108, 1759 (2020).
  10. T. Lin, A. Dutt, C. Joshi, X. Ji, C.T. Phare, Y. Okawachi, A.L. Gaeta, M. Lipson, “Broadband ultrahigh-resolution chip-scale scanning soliton dual-comb spectroscopy,” arXiv:2001.00869 (2020).
  1. A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, S. Fan, “Experimental band structure spectroscopy along a synthetic dimension,” Nature Communications 10, 3122 (2019).
  2. A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, S. Fan, “Experimental demonstration of dynamical input isolation in nonadiabatically modulated photonic cavities,” ACS Photonics, 6, 162 (2019).
  3. G. R. Bhatt, A. Dutt, S. A. Miller, R. St-Gelais, F. A. S. Barbosa, M. Lipson, “Broadband enhancement of thermal radiation,” Optics Express 27, A818 (2019).
  4. G. Patwardhan, X. Gao, A. Sagiv, A. Dutt, J. Ginsberg, A. Ditkowski, G. Fibich, A. L. Gaeta, “Loss of polarization of elliptically polarized collapsing beams,” Phys. Rev. A 99, 033824 (2019).
  5. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, M. Lipson, “On-chip dual comb source for spectroscopy,” Science Advances 4, e1701858 (2018).
  6. L. Yuan, Q. Lin, M. Xiao, A. Dutt, S. Fan, “Pulse shortening in an actively mode-locked laser with parity-time symmetry,” APL Photonics 3, 086103 (2018).
  7. B. Stern, X. Ji, A. Dutt, M Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42, 4541 (2017).
  8. A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, M. Lipson, “Quantum Interference between Transverse Spatial Waveguide Modes”, Nat. Comm. 8, 14010 (2017).
  9. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619 (2017).
  10. A. Dutt, S. Miller, K. Luke, J. Cardenas, A. L. Gaeta, P. Nussenzveig, M. Lipson, “Tunable squeezing using coupled ring resonators on a silicon nitride chip,” Opt. Lett. 41, 223 (2016).
  11. R. Haldar, V. Mishra, A. Dutt, S.K. Varshney, “On-chip broadband ultra-compact optical couplers and polarization splitters based on off-centered and non-symmetric slotted Si-wire waveguides,” J. Optics 18, 105801 (2016).
  12. A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, M. Lipson, “On-chip Optical Squeezing,” Phys. Rev. Applied 3, 044005 (2015).
  13. S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23, 21527 (2015).
  14. J. Cardenas, M. Yu, Y. Okawachi, C. B. Poitras, R. K. W. Lau, A. Dutt, A. L. Gaeta, M. Lipson, “Optical nonlinearities in high confinement SiC waveguides,” Opt. Lett. 40, 4138 (2015).
  15. K. Luke, A. Dutt, C. B. Poitras, M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Optics Express 21, 22829 (2013).
  16. A. Dutt, T. Nath, S. Kar, R Parwani, “Splitting of degenerate states in one-dimensional quantum mechanics,” Eur. Phys. J. Plus 127, 1, (2012).
  17. A Dutt, S. K. Varshney, S. Mahapatra, “Design of tunable couplers using magnetic fluid filled three-core optical fibers,” IEEE Phot. Tech. Lett. 24, 164 (2012).
  18. C. A. Mejia, A. Dutt and M. L. Povinelli, “Light-assisted templated self assembly using photonic crystal slabs,” Opt. Express 19, 11422 (2011).
  19. A. Dutt, S. Mahapatra, S. K. Varshney, “Capillary optical fibers: design and applications for attaining a large effective mode area,” J. Opt. Soc. Am. B 28, 1431 (2011).
  20. A. Dutt, S. Kar, “Smooth double barriers in quantum mechanics,” Am. J. Phys. 78, 1352 (2010).